十讲走进语言统计学

十讲走进语言统计学
503人加入学习
(1人评价)
价格 ¥499.00
学时 20.0
学时 20.0
学习有效期 180 天(随到随学)
会员免费学 购买课程

参考笔记本第五页

[展开全文]
玉妈 · 2018-10-16 · 课后作业 0

需要查看上课视频

[展开全文]
玉妈 · 2018-10-16 · 课后测验 0

总体样本与抽样,描述统计与推断统计,变量,正态分布和标准分,参数估计,假设检验,踢检验,方差分析,相关分析,回归分析,卡方检验,spss统计软件

[展开全文]

参数估计

 

参数估计就是根据样本统计量来推断总体参数

 

256人的平均分是482 

总体平均数叫μ

 

参数估计可以分成点估计和区间估计,

点估计的这个值是一个点值

例子:

点估计是基于样本数据得到的 所以它的估计不太准确, 而且点估计没有办法判断参数 

 

区间估计(interval estimation)就是给出总体参数所在的范围,以及总体参数在这个范围内的可能性有多大

例子

点估计是用一个数值来估计总体的参数

区间估计是用一个范围,所以它的估计方法更正确

非常有用:

置信水平(confidence level):我们不可能做到100%, 我们要留有区间。 我们要有95%及以上的把握, 这样我们才能说我们的推测是有效的。 

 

总体参数的区间估计如何计算

第一计算标准误(standard error)

我们不知道总体标准差, 所以我们只能通过样本来推测 --  公式1:样本标准差除以样本量开根号

 

第二部通过标准误来计算置信临界值(confidence limit)

用可靠程度(95%)去查临界值(z)-- 上网搜正态分布表,可以移动一个数值的轴查到相应的Z值(临界值), 比如说这个95%的置信水平对应的临界值是+-1.96

意思就是当你有95%把握的时候, 白色的区域都是合理的区域,有阴影的位置都是错误的区域

第三部分:估计总体参数的区间

公式2: 用样本的平均数减去总体的平均数再除以标准误, 这个数字需要在上边说到的-1.96到1.96之间。 

最后我们算出来μ是在478-486 这个就是区间。 

 

 

 

 

[展开全文]

总体:具有某种共同特征的个体的总和

人和食物都可以作为总体

 

样本:从总体中抽出的一部分个体

样本》30 大样本

样本《 30 小样本

 

调查研究常用大样本

实验研究常用小样本 

 

抽样(sampling)

简单随机抽样 (抽签法-适合总体比较法

随机数表法- 适合于大数字, 任意选一个起点,按照一定的规律选择)

 

等距抽样/系统抽样

20 /100 每5个人抽取一个被试

在每5个数字中抽取一个样本

 

分层抽样

比如说按照大学类型或者以地理位置分布分层

原则:层内差异小,层间差异大

 

2. 变量

自变量 (independent variables)是我可以控制的变量 (教学法)

因变量(dependent variables)-我可以观察的变量 (成绩)

 

类别变量(nominal variables)不同的特征:性别家庭背景等

顺序变量 (ordinal variables) 在类别的变量的基础上将类别进行排序 比如说年级:一年级,二年级、 助教讲师副教授

等距变量 (interval variables) 就是各种分数,比如说专四专八考试分数,李克特量表等

 

 

连续型变量 (continuous varoables) -  可以有小数 0.5 的部分有意义 比如说雅思的平均成绩是6.5 

频次变量 (frequency variables)- 只有零和正整数, 比如说今天来了16个人,不能说16.5个

 

数据的整理和描述

1. 集中趋势

平均数 (mean)

中位数 (median)

众数 (mode)

 

离散趋势

全距 (range)

平均差 (average deviation)

方差 (variance )

标准差 (standard deviation)

方差和标准差其实是一回事 方差是经过平方的, 在实际使用的时候不好用

我们在工作中实际使用的是标准差

实际得分减去平均数, 然后平方, 然后求和,然后除以人数 

标准差越小, 学生和学生之间的差异越小

 

针对连续变量:在针对连续型变量的时候一定要同时汇报集中趋势(平均数)和离散趋势(标准差)

针对频次变量:只需要描述个数

比如说这次实验中有男生5个女生4个

 

推断统计方法概述 (inferential statistics)是按照一定的原理,用样本的数字来做推断

样本统计量 (statistics) 

总体参数 (parameters)

他两的平均数和标准差的字母标记方式不一样,但是基本上是一样的东西。比如说在样本统计量里平均数用的是(m), 标准差用的是(STD ), 而再总体参数里平均数用的是μ, 标准差用的是A

 

推断统计一般来说做两件事:

参数统计 (parameter estimation)-比如说有了样本的平均数和标准差, 我们可以推断总体参数的数值

假设检验  (hypothesis testing)- 上边估计出来的总体参数, 你估计它有多少可能是正确的

 

推断统计的类型:

1. 如果是为了找差别, 那就用T检验方差分析

2. 如果是为了找关系,就用

相关检验

回归检验

卡方检验

[展开全文]

量化源于实证,主要使用演绎法,依赖统计

[展开全文]
MrsQ · 2018-10-08 · 该任务已被删除 0

“统计” 用数字的方法说明国家的特征;

统计分类:

  1. 描述统计 (汇报全貌)
  2. 推断统计 (做决断)
[展开全文]

量化研究用数字描述现象

质性研究用文字描述现象

量化研究源于实证主义

质性研究源于自然主义

量化研究通常在经过控制的实验环境下进行

质性研究通常在未经控制的自然环境下进行

量化研究具有演绎性,通常用于假设展开研究

质性研究具有归纳性,通常在研究中形成假设

量化研究常用方法:实验,准实验,调查,语料库,元分析。

质性研究常用方法:观察,访谈,日志,叙事,民族志。

描述统计:关注如何整理数据,并汇报其全貌,比如分组,绘图,集中趋势,离散趋势等。

推断统计:关注如何利用数据做决断,并确定其可靠程度,比如推断总体分布状态,差异程度,相关程度等。

[展开全文]
MrsQ · 2018-09-02 · 课程导学 0

授课教师

北京语言大学

学员动态

里里djo 加入学习
Ruiyang 完成了 作业反馈
Ruiyang 开始学习 作业反馈
Ruiyang 开始学习 课后作业
Ruiyang 开始学习 问题反馈